Skip to content

Commit

Permalink
Fix typos in blueprint and lean files (#1)
Browse files Browse the repository at this point in the history
* Update Defs.lean

* Update Carleson.lean

* Update main.tex
  • Loading branch information
pitmonticone authored Apr 3, 2024
1 parent bbb884b commit 1276b98
Show file tree
Hide file tree
Showing 3 changed files with 15 additions and 15 deletions.
2 changes: 1 addition & 1 deletion Carleson/Carleson.lean
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,7 @@ lemma equation3_1 {f : X → ℂ} (hf : LocallyIntegrable f)
rw [h3, ← neg_sub, ← integral_univ, ← integral_diff]
all_goals sorry

/- Proof should be straightward from the definition of maximalFunction and conditions on `𝓠`.
/- Proof should be straightforward from the definition of maximalFunction and conditions on `𝓠`.
We have to approximate `Q` by an indicator function.
2^σ ≈ r, 2^σ' ≈ R
There is a small difference in integration domain, and for that we use the estimate IsCZKernel.norm_le_vol_inv
Expand Down
2 changes: 1 addition & 1 deletion Carleson/Defs.lean
Original file line number Diff line number Diff line change
Expand Up @@ -120,7 +120,7 @@ class IsCZKernel (τ : ℝ) (K : X → X → ℂ) : Prop where

/-- In Mathlib we only have the operator norm for continuous linear maps,
and (I think that) `T_*` is not linear.
Here is the norm for an arbitary map `T` between normed spaces
Here is the norm for an arbitrary map `T` between normed spaces
(the infimum is defined to be 0 if the operator is not bounded). -/
def operatorNorm {E F : Type*} [NormedAddCommGroup E] [NormedAddCommGroup F] (T : E → F) : ℝ :=
sInf { c | 0 ≤ c ∧ ∀ x, ‖T x‖ ≤ c * ‖x‖ }
Expand Down
26 changes: 13 additions & 13 deletions blueprint/src/chapter/main.tex
Original file line number Diff line number Diff line change
Expand Up @@ -626,7 +626,7 @@ \chapter{Overview of the proof of Theorem \ref{thm main 1}}
\dens_2(\bigcup_{\fu\in \fU}\fT(\fu))^{1/q-1/2} \, .$$
\end{prop}

Theorem \ref{thm main 1} is formulated at the level of genereality
Theorem \ref{thm main 1} is formulated at the level of generality
for general kernels satisfying the mere H\"older regularity condition \eqref{eqkernel y smooth}. On the other hand, the $\tau$-cancellative condition \eqref{ew vdc cond} is a testing against more regular,
namely Lipschitz functions. To bridge the gap, we follow \cite{zk-polynomial} to observe a variant of \eqref{ew vdc cond} that we formulate
in the following Proposition proved in Section \ref{liphoel}.
Expand Down Expand Up @@ -1013,7 +1013,7 @@ \chapter{P. \ref{prop-linear}
By \eqref{coverball} and $G\subset B(o,D^S)$, there is at least
one $I\in \mathcal{D}$ with $s(I)=s$ and $x\in I$.
By \eqref{dyadicproperty}, this $I$ is unique. By \eqref{eq dis freq cover}, there is precisely one $\fp\in \fP(I)$ such that
$\tQ(x)\in \fc(\fp)$. Hecne there is precisely one $\fp\in \fP$ with $\ps(\fp)=s$ such that
$\tQ(x)\in \fc(\fp)$. Hence there is precisely one $\fp\in \fP$ with $\ps(\fp)=s$ such that
$x\in E(\fp)$. For this $\fp$, the value $T_{\fp}(x)$ by its definition in \eqref{definetp}
equals the right-hand side of \eqref{insump}. This proves the lemma.
\end{proof}
Expand Down Expand Up @@ -1061,7 +1061,7 @@ \section{Proof of L.\ref{dyadiclemma}, dyadic structure}
\begin{equation}\label{jballs}
\mu(B(y,2^{j}D^k))\le A^j \mu(B(y,D^k))\, .
\end{equation}
As $X$ is the union of the balls $B(y,2^{j}D^k)$ and $\mu$ is not zero, at least one ov
As $X$ is the union of the balls $B(y,2^{j}D^k)$ and $\mu$ is not zero, at least one of
the balls $B(y,2^{j}D^k)$ has positive measure und thus $B(y,D^k)$ has positive measure.

Applying \eqref{jballs} for $j'$ the smallest integer larger than $\ln_2(8D^{2S})$, using $-S\le k\le S$
Expand Down Expand Up @@ -1561,7 +1561,7 @@ \section{Proof of L.\ref{tilelemma}, tile structure}
\end{lemma}

\begin{proof}
This follows immediatly from the definition \eqref{definedE} and monotonicity of suprema with respect to set inclusion.
This follows immediately from the definition \eqref{definedE} and monotonicity of suprema with respect to set inclusion.
\end{proof}

Choose a grid structure $(\mathcal{D}, c, s)$. For cubes $I \in \mathcal{D}$, we will denote
Expand Down Expand Up @@ -1661,7 +1661,7 @@ \section{Proof of L.\ref{tilelemma}, tile structure}
$$
We define $\sc((I, z)) = I$ and $\fcc((I, z)) = z$. We further set $s(\fp) = s(\sc(\fp))$, $c(\fp) = c(\sc(\fp))$. Then \eqref{tilecenter}, \eqref{tilescale} hold.

It remains to construct the map $\Omega$. We first construct an auxilliary map $\Omega_1$. For each $I \in \mathcal{D}$, we pick an enumeration of the finite set $Z(I)$
It remains to construct the map $\Omega$. We first construct an auxiliary map $\Omega_1$. For each $I \in \mathcal{D}$, we pick an enumeration of the finite set $Z(I)$
$$
Z(I) = \{z_1, \dotsc, z_M\}\,.
$$
Expand Down Expand Up @@ -2131,7 +2131,7 @@ \section{Proof of Lemma \ref{allgbound}, the exceptional sets}
\begin{proof}
Let $\fp,\fp'$ as in the lemma. As by definition of $E_1$
we have
$E_1(\fp)\subset \sc(\fp)$ and analoguously for $\fp'$, we conclude from \eqref{eintersect} that $\sc(\fp)\cap \sc(\fp')\neq \emptyset$. Let without loss of generality $\sc(\fp)$ be maximal in
$E_1(\fp)\subset \sc(\fp)$ and analogously for $\fp'$, we conclude from \eqref{eintersect} that $\sc(\fp)\cap \sc(\fp')\neq \emptyset$. Let without loss of generality $\sc(\fp)$ be maximal in
$\{\sc(\fp),\sc(\fp')\}$, then $\sc(\fp')\subset \sc(\fp)$.
By \eqref{eintersect}, we conclude by definition of $E_1$ that $\fc(\fp)\cap \fc(\fp')\neq \emptyset$. By
\eqref{eq freq dyadic} we conclude $\fc(\fp)\subset \fc(\fp')$. It follows that $\fp'\le \fp$. By maximality
Expand Down Expand Up @@ -2476,7 +2476,7 @@ \section{Proof of Lemma \ref{allgbound}, the exceptional sets}
Using $D = 2^{100a^2}$ and $a \ge 4$ and $\kappa Z \ge 1$ proves the lemma.
\end{proof}

\section{Auxilliary lemmas}
\section{Auxiliary lemmas}

Before proving Lemma \ref{subsecflemma} and Lemma \ref{subsecalemma}, we collect some useful properties of $\lesssim$.

Expand Down Expand Up @@ -3412,7 +3412,7 @@ \section{The density arguments}\label{sec TT* T*T}
\begin{equation}
\le 2^{200a^3}({q}-1)^{-1} \tau^{-1}\dens_1(\mathfrak{A})^{\frac {q-1}{2p}}\dens_2(\mathfrak{A})^{\frac 1{q}-\frac 12} \|f\|_2\|g\|_2\, .
\end{equation}
With the definiiton of $p$, this implies
With the definition of $p$, this implies
Proposition \ref{antichainprop}.


Expand Down Expand Up @@ -3560,7 +3560,7 @@ \section{Proof of L. \ref{lem basic TT*}, the tile correlation bound }\label{sec
\le 2^{4a} d_{\fp_2}(\tQ(x_2),\fcc(\fp_2))\le 2^{4a}
\, .
\end{equation}
By the triangle ineqality, we obtain from \eqref{dponetwo} and
By the triangle inequality, we obtain from \eqref{dponetwo} and
\eqref{tgeo0.5}
\begin{equation}\label{tgeo1}
1+d_{\fp_1}(\fcc(\fp_1), \fcc(\fp_2))\le 2+2^{4a} +d_{\fp_1}(\tQ(x_1), \tQ(x_2))\, .
Expand All @@ -3577,7 +3577,7 @@ \section{Proof of L. \ref{lem basic TT*}, the tile correlation bound }\label{sec
\begin{equation}\label{tgeo1.5}
\le 2+2^{4a}+d_{B(x_1,8D^{\ps(\fp_1)})}(\tQ(x_1), \tQ(x_2))\, .
\end{equation}
This is further estimated by aplying the doubling property \eqref{firstdb} three times by
This is further estimated by applying the doubling property \eqref{firstdb} three times by
\begin{equation}\label{tgeo2}
\le 2+2^{4a}+2^{3a}d_{B_1(x_1, D^{s(\fp_1)})}(\tQ(x_1), \tQ(x_2))\, .
\end{equation}
Expand Down Expand Up @@ -3614,7 +3614,7 @@ \section{Proof of L. \ref{lem basic TT*}, the tile correlation bound }\label{sec
\begin{equation}
\rho(x,y)\le \frac 12 D^{\ps(\fp)}\, .
\end{equation}
Now \eqref{ynotfar} follows by the tirangle inequality.
Now \eqref{ynotfar} follows by the triangle inequality.
\end{proof}


Expand Down Expand Up @@ -3966,7 +3966,7 @@ \section{Proof of Lemma \ref{lem antichain 1}, the geometric estimate}
We turn to \eqref{eqanti2}.
Consider the element $\fp'\in \mathfrak{A}'$ as above
with $L\subset \sc(\fp')$ and $s(L)<s(\fp')$.
As $L\subset L'$, we conclude twith the dyadic property that $L'\subset \sc(\fp')$.
As $L\subset L'$, we conclude with the dyadic property that $L'\subset \sc(\fp')$.
By maximality of $L$, we have
$L'\not\in \mathcal{L}$.
This together with the existence of the given $\fp'\in \mathfrak{A}$
Expand Down Expand Up @@ -4235,7 +4235,7 @@ \section{Tree Estimate}
$$
P_{\mathcal{C}}f(x) :=\sum_{J\in\mathcal{C}}\mathbf{1}_J(x) \frac{1}{\mu(J)}\int_J f(y) \, \mathrm{d}\mu(y)\,.
$$
Define for each $\fu \in \fU$ the auxilliary operator
Define for each $\fu \in \fU$ the auxiliary operator
\begin{equation}
\label{eq def S op}
S_{\fu}f(x):=\sum_{I\in\mathcal{D}} \mathbf{1}_{I}(x) \sum_{\substack{J\in \mathcal{J}(\fT(\fu))\\
Expand Down

0 comments on commit 1276b98

Please sign in to comment.