Skip to content

Commit

Permalink
fix decls
Browse files Browse the repository at this point in the history
  • Loading branch information
fpvandoorn committed Jun 30, 2024
1 parent a729fea commit 69821e4
Show file tree
Hide file tree
Showing 2 changed files with 12 additions and 12 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/push.yml
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@ jobs:
- name: Install blueprint dependencies
run: |
pip install -r blueprint/requirements.txt
cd blueprint && pip install -r requirements.txt
- name: Build blueprint and copy to `docs/blueprint`
run: |
Expand Down
22 changes: 11 additions & 11 deletions blueprint/src/chapter/main.tex
Original file line number Diff line number Diff line change
Expand Up @@ -582,7 +582,7 @@ \chapter{Proof of Metric Space Carleson, overview}
\begin{proposition}[Hardy--Littlewood]
\label{Hardy-Littlewood}
\leanok
\lean{measure_biUnion_le_lintegral, maximalFunction_lt_top, snorm_maximalFunction, M_lt_top,
\lean{measure_biUnion_le_lintegral, maximalFunction_le_snorm, hasStrongType_maximalFunction, M_lt_top,
laverage_le_M, snorm_M_le}
\uses{layer-cake-representation,covering-separable-space}
Let $\mathcal{B}$ be a finite collection of balls in $X$.
Expand Down Expand Up @@ -6055,7 +6055,7 @@ \chapter{Proof of Vitali covering and Hardy--Littlewood}
We begin with a classical representation of the Lebesgue norm.
\begin{lemma}[layer cake representation]\label{layer-cake-representation}
\leanok
\lean{snorm_pow_eq_distribution}
\lean{MeasureTheory.snorm_pow_eq_distribution}
Let $1\le p< \infty$. Then for any measurable function $u:X\to [0,\infty)$ on the measure space $X$
relative to the measure $\mu$
we have
Expand Down Expand Up @@ -6408,7 +6408,7 @@ \section{The classical Carleson theorem}
\begin{lemma}[smooth approximation]
\label{smooth-approximation}
\leanok
\lean{}
% \lean{}
The function $f_0$ is $2\pi$-periodic.
The function $f_0$ is smooth (and therefore measurable).
The function $f_0$ satisfies for all $x\in \R$:
Expand All @@ -6426,7 +6426,7 @@ \section{The classical Carleson theorem}
\begin{lemma}[convergence for smooth]
\label{convergence-for-smooth}
\leanok
\lean{}
% \lean{}
\uses{convergence-for-twice-contdiff}
There exists some $N_0 \in \N$ such that for all $N>N_0$ and $x\in [0,2\pi]$ we have
\begin{equation}
Expand All @@ -6438,7 +6438,7 @@ \section{The classical Carleson theorem}
\begin{lemma}[control approximation effect]
\label{control-approximation-effect}
\leanok
\lean{}
% \lean{}
\uses{real-Carleson}
There is a set $E \subset \R$ with Lebesgue measure
$|E|\le \epsilon$ such that for all
Expand Down Expand Up @@ -6492,7 +6492,7 @@ \section{The classical Carleson theorem}
\Cref{metric-space-Carleson}.
\begin{lemma}[real Carleson]\label{real-Carleson}
\leanok
\lean{}
% \lean{}
\uses{metric-space-Carleson,real-line-metric,real-line-measure,real-line-doubling,oscillation-control,frequency-monotone,frequency-ball-doubling,frequency-ball-growth,integer-ball-cover,real-van-der-Corput,nontangential-Hilbert}
Let $F,G$ be Borel subsets of $\R$ with finite measure. Let $f$ be a bounded measurable function on $\R$ with $|f|\le \mathbf{1}_F$. Then
\begin{equation}
Expand Down Expand Up @@ -6680,7 +6680,7 @@ \section{The classical Carleson theorem}
\begin{lemma}[Hilbert kernel bound]
\label{Hilbert-kernel-bound}
\leanok
\lean{}
% \lean{}
\uses{lower-secant-bound}
For $x,y\in \R$ with $x\neq y$ we have
\begin{equation}\label{eqcarl30}
Expand All @@ -6705,7 +6705,7 @@ \section{The classical Carleson theorem}
\begin{lemma}[Hilbert kernel regularity]
\label{Hilbert-kernel-regularity}
\leanok
\lean{}
% \lean{}
\uses{lower-secant-bound}
For $x,y,y'\in \R$ with $x\neq y,y'$ and
\begin{equation}
Expand Down Expand Up @@ -6764,7 +6764,7 @@ \section{Smooth functions.}
\begin{lemma}
\label{fourier-coeff-derivative}
\leanok
\lean{}
% \lean{}
Let $f:\R \to \C$ be $2\pi$-periodic and differentiable, and let $n \in \Z \setminus \{0\}$. Then
\begin{equation}
\widehat{f}_n = \frac{1}{i n} \widehat{f'}_n.
Expand All @@ -6778,7 +6778,7 @@ \section{Smooth functions.}
\begin{lemma}
\label{convergence-of-coeffs-summable}
\leanok
\lean{}
% \lean{}
Let $f:\R \to \C$ such that
\begin{equation}
\sum_{n\in \Z} |\widehat{f}_n| < \infty.
Expand All @@ -6799,7 +6799,7 @@ \section{Smooth functions.}
\label{convergence-for-twice-contdiff}
\uses{fourier-coeff-derivative,convergence-of-coeffs-summable}
\leanok
\lean{}
% \lean{}
Let $f:\R \to \C$ be $2\pi$-periodic and twice continuously differentiable. Then
\begin{equation}
\sup_{x\in [0,2\pi]} |f(x) - S_Nf(x)| \rightarrow 0
Expand Down

0 comments on commit 69821e4

Please sign in to comment.