Skip to content

Commit

Permalink
Lemma 7.4.7
Browse files Browse the repository at this point in the history
  • Loading branch information
Parcly-Taxel committed Sep 26, 2024
1 parent 611d9cc commit a1635e2
Show file tree
Hide file tree
Showing 3 changed files with 62 additions and 13 deletions.
4 changes: 4 additions & 0 deletions Carleson/Defs.lean
Original file line number Diff line number Diff line change
Expand Up @@ -487,6 +487,10 @@ lemma DκZ_le_two_rpow_100 [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F
nth_rw 1 [← mul_one (a ^ 2), ← mul_assoc]
gcongr; exact Nat.one_le_two_pow

lemma four_le_Z [PseudoMetricSpace X] [ProofData a q K σ₁ σ₂ F G] : 4 ≤ Z := by
rw [defaultZ, show 4 = 2 ^ 2 by rfl]
exact Nat.pow_le_pow_right zero_lt_two (by linarith [four_le_a X])

variable (a) in
/-- `D` as an element of `ℝ≥0`. -/
def nnD : ℝ≥0 := ⟨D, by simp [D_nonneg]⟩
Expand Down
68 changes: 56 additions & 12 deletions Carleson/ForestOperator.lean
Original file line number Diff line number Diff line change
Expand Up @@ -175,7 +175,7 @@ lemma second_tree_pointwise (hu : u ∈ t) (hL : L ∈ 𝓛 (t u)) (hx : x ∈ L
calc
_ ≤ dist_(p') (𝒬 u) (𝒬 p') + dist_(p') (Q x) (𝒬 p') := dist_triangle_right ..
_ < 4 + 1 :=
add_lt_add_of_lt_of_lt ((t.smul_four_le' hu mp').2 (by convert mem_ball_self zero_lt_one))
add_lt_add_of_lt_of_lt ((t.smul_four_le hu mp').2 (by convert mem_ball_self zero_lt_one))
(subset_cball Qxp')
_ = _ := by norm_num
have d5' : dist_{x, D ^ s₂} (𝒬 u) (Q x) < 5 * defaultA a ^ 5 := by
Expand Down Expand Up @@ -420,11 +420,11 @@ lemma density_tree_bound2 -- some assumptions on f are superfluous

/-! ## Section 7.4 except Lemmas 4-6 -/

/-- The definition of `Tₚ*g(x), defined above Lemma 7.4.1 -/
/-- The definition of `Tₚ*g(x)`, defined above Lemma 7.4.1 -/
def adjointCarleson (p : 𝔓 X) (f : X → ℂ) (x : X) : ℂ :=
∫ y in E p, conj (Ks (𝔰 p) y x) * exp (.I * (Q y y - Q y x)) * f y

/-- The definition of `T_ℭ*g(x), defined at the bottom of Section 7.4 -/
/-- The definition of `T_ℭ*g(x)`, defined at the bottom of Section 7.4 -/
def adjointCarlesonSum (ℭ : Set (𝔓 X)) (f : X → ℂ) (x : X) : ℂ :=
∑ p ∈ {p | p ∈ ℭ}, adjointCarleson p f x

Expand All @@ -448,9 +448,9 @@ lemma _root_.MeasureTheory.AEStronglyMeasurable.adjointCarleson (hf : AEStrongly
refine aestronglyMeasurable_Ks.prod_swap
· refine Complex.continuous_exp.comp_aestronglyMeasurable ?_
refine .const_mul (.sub ?_ ?_) _
. refine Measurable.aestronglyMeasurable ?_
· refine Measurable.aestronglyMeasurable ?_
fun_prop
. refine continuous_ofReal.comp_aestronglyMeasurable ?_
· refine continuous_ofReal.comp_aestronglyMeasurable ?_
exact aestronglyMeasurable_Q₂ (X := X) |>.prod_swap
· exact hf.snd

Expand Down Expand Up @@ -536,16 +536,60 @@ lemma adjoint_tree_control (hu : u ∈ t) (hf : IsBounded (range f)) (h2f : HasC
simp_rw [C7_4_3, ENNReal.coe_add, ENNReal.one_rpow, mul_one, ENNReal.coe_one]
with_reducible rfl

/-- Part 2 of Lemma 7.4.7. -/
lemma 𝔗_subset_𝔖₀ (hu₁ : u₁ ∈ t) (hu₂ : u₂ ∈ t) (hu : u₁ ≠ u₂)
(h2u : 𝓘 u₁ ≤ 𝓘 u₂) : t u₁ ⊆ 𝔖₀ t u₁ u₂ := by
sorry

/-- Part 1 of Lemma 7.4.7. -/
lemma overlap_implies_distance (hu₁ : u₁ ∈ t) (hu₂ : u₂ ∈ t) (hu : u₁ ≠ u₂)
(h2u : 𝓘 u₁ ≤ 𝓘 u₂) (hp : p ∈ t u₁ ∪ t u₂)
(hpu₁ : ¬ Disjoint (𝓘 p : Set X) (𝓘 u₁)) : p ∈ 𝔖₀ t u₁ u₂ := by
sorry
(hpu₁ : ¬Disjoint (𝓘 p : Set X) (𝓘 u₁)) : p ∈ 𝔖₀ t u₁ u₂ := by
simp_rw [𝔖₀, mem_setOf, hp, true_and]
wlog plu₁ : 𝓘 p ≤ 𝓘 u₁ generalizing p
· have u₁lp : 𝓘 u₁ ≤ 𝓘 p := (le_or_ge_or_disjoint.resolve_left plu₁).resolve_right hpu₁
obtain ⟨p', mp'⟩ := t.nonempty hu₁
have p'lu₁ : 𝓘 p' ≤ 𝓘 u₁ := (t.smul_four_le hu₁ mp').1
obtain ⟨c, mc⟩ := (𝓘 p').nonempty
specialize this (mem_union_left _ mp') (not_disjoint_iff.mpr ⟨c, mc, p'lu₁.1 mc⟩) p'lu₁
exact this.trans (Grid.dist_mono (p'lu₁.trans u₁lp))
have four_Z := four_le_Z (X := X)
have four_le_Zn : 4 ≤ Z * (n + 1) := by rw [← mul_one 4]; exact mul_le_mul' four_Z (by omega)
have four_le_two_pow_Zn : 42 ^ (Z * (n + 1) - 1) := by
change 2 ^ 2 ≤ _; exact Nat.pow_le_pow_right zero_lt_two (by omega)
have ha : (2 : ℝ) ^ (Z * (n + 1)) - 42 ^ (Z * n / 2 : ℝ) :=
calc
_ ≥ (2 : ℝ) ^ (Z * (n + 1)) - 2 ^ (Z * (n + 1) - 1) := by gcongr; norm_cast
_ = 2 ^ (Z * (n + 1) - 1) := by
rw [sub_eq_iff_eq_add, ← two_mul, ← pow_succ', Nat.sub_add_cancel (by omega)]
_ ≥ 2 ^ (Z * n) := by apply pow_le_pow_right one_le_two; rw [mul_add_one]; omega
_ ≥ _ := by
rw [← Real.rpow_natCast]
apply Real.rpow_le_rpow_of_exponent_le one_le_two; rw [Nat.cast_mul]
exact half_le_self (by positivity)
rcases hp with (c : p ∈ t.𝔗 u₁) | (c : p ∈ t.𝔗 u₂)
· calc
_ ≥ dist_(p) (𝒬 p) (𝒬 u₂) - dist_(p) (𝒬 p) (𝒬 u₁) := by
change _ ≤ _; rw [sub_le_iff_le_add, add_comm]; exact dist_triangle ..
_ ≥ 2 ^ (Z * (n + 1)) - 4 := by
gcongr
· exact (t.lt_dist' hu₂ hu₁ hu.symm c (plu₁.trans h2u)).le
· have : 𝒬 u₁ ∈ ball_(p) (𝒬 p) 4 :=
(t.smul_four_le hu₁ c).2 (by convert mem_ball_self zero_lt_one)
rw [@mem_ball'] at this; exact this.le
_ ≥ _ := ha
· calc
_ ≥ dist_(p) (𝒬 p) (𝒬 u₁) - dist_(p) (𝒬 p) (𝒬 u₂) := by
change _ ≤ _; rw [sub_le_iff_le_add, add_comm]; exact dist_triangle_right ..
_ ≥ 2 ^ (Z * (n + 1)) - 4 := by
gcongr
· exact (t.lt_dist' hu₁ hu₂ hu c plu₁).le
· have : 𝒬 u₂ ∈ ball_(p) (𝒬 p) 4 :=
(t.smul_four_le hu₂ c).2 (by convert mem_ball_self zero_lt_one)
rw [@mem_ball'] at this; exact this.le
_ ≥ _ := ha

/-- Part 2 of Lemma 7.4.7. -/
lemma 𝔗_subset_𝔖₀ (hu₁ : u₁ ∈ t) (hu₂ : u₂ ∈ t) (hu : u₁ ≠ u₂) (h2u : 𝓘 u₁ ≤ 𝓘 u₂) :
t u₁ ⊆ 𝔖₀ t u₁ u₂ := fun p mp ↦ by
apply overlap_implies_distance hu₁ hu₂ hu h2u (mem_union_left _ mp)
obtain ⟨c, mc⟩ := (𝓘 p).nonempty
exact not_disjoint_iff.mpr ⟨c, mc, (t.smul_four_le hu₁ mp).1.1 mc⟩

/-! ## Section 7.5 -/

Expand Down
3 changes: 2 additions & 1 deletion blueprint/src/chapter/main.tex
Original file line number Diff line number Diff line change
Expand Up @@ -5107,11 +5107,12 @@ \section{Almost orthogonality of separated trees}
\end{lemma}

\begin{proof}
\leanok
Suppose first that $\fp \in \fT(\fu_1)$. Then $\scI(\fp) \subset \scI(\fu_1) \subset \scI(\fu_2)$, by \eqref{forest1}. Thus we have by the separation condition \eqref{forest5}, \eqref{eq-freq-comp-ball}, \eqref{forest1} and the triangle inequality
\begin{align*}
d_{\fp}(\fcc(\fu_1), \fcc(\fu_2)) &\ge d_{\fp}(\fcc(\fp), \fcc(\fu_2)) - d_{\fp}(\fcc(\fp), \fcc(\fu_1))\\
&\ge 2^{Z(n+1)} - 4\\
&\ge 2^{Zn}\,,
&\ge 2^{Zn/2}\,,
\end{align*}
using that $Z= 2^{12a}\ge 4$. Hence $\fp \in \mathfrak{S}$.

Expand Down

0 comments on commit a1635e2

Please sign in to comment.