Skip to content

Commit

Permalink
Drop test_dup_htlc_onchain_fails_on_reload as it no longer applies
Browse files Browse the repository at this point in the history
test_dup_htlc_onchain_fails_on_reload tested our outbound payment
tracking to ensure we never sent more than one PaymentSent event
to users per payment in the case of a manager-monitor storage
order inversion which was common. However, now that we require
monitors be persisted when a block is connected, that inversion
can never occur, and thus the test isn't testing anything.
  • Loading branch information
TheBlueMatt committed Oct 5, 2021
1 parent 64a083e commit a0fe042
Showing 1 changed file with 0 additions and 109 deletions.
109 changes: 0 additions & 109 deletions lightning/src/ln/functional_tests.rs
Original file line number Diff line number Diff line change
Expand Up @@ -4381,115 +4381,6 @@ fn retry_expired_payment() {
}
}

#[test]
fn test_dup_htlc_onchain_fails_on_reload() {
// When a Channel is closed, any outbound HTLCs which were relayed through it are simply
// dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor
// having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when
// the ChannelMonitor tells it to.
//
// If, due to an on-chain event, an HTLC is failed/claimed, and then we serialize the
// ChannelManager, we generally expect there not to be a duplicate HTLC fail/claim (eg via a
// PaymentPathFailed event appearing). However, because we may not serialize the relevant
// ChannelMonitor at the same time, this isn't strictly guaranteed. In order to provide this
// consistency, the ChannelManager explicitly tracks pending-onchain-resolution outbound HTLCs
// and de-duplicates ChannelMonitor events.
//
// This tests that explicit tracking behavior.
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let persister: test_utils::TestPersister;
let new_chain_monitor: test_utils::TestChainMonitor;
let nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);

create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());

// Route a payment, but force-close the channel before the HTLC fulfill message arrives at
// nodes[0].
let (payment_preimage, _, _) = route_payment(&nodes[0], &[&nodes[1]], 10000000);
nodes[0].node.force_close_channel(&nodes[0].node.list_channels()[0].channel_id).unwrap();
check_closed_broadcast!(nodes[0], true);
check_added_monitors!(nodes[0], 1);
check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);

nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);

// Connect blocks until the CLTV timeout is up so that we get an HTLC-Timeout transaction
connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1);
let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
assert_eq!(node_txn.len(), 3);
assert_eq!(node_txn[0], node_txn[1]);

assert!(nodes[1].node.claim_funds(payment_preimage));
check_added_monitors!(nodes[1], 1);

let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 };
connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[1].clone(), node_txn[2].clone()]});
check_closed_broadcast!(nodes[1], true);
check_added_monitors!(nodes[1], 1);
check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
let claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);

header.prev_blockhash = nodes[0].best_block_hash();
connect_block(&nodes[0], &Block { header, txdata: vec![node_txn[1].clone(), node_txn[2].clone()]});

// Serialize out the ChannelMonitor before connecting the on-chain claim transactions. This is
// fairly normal behavior as ChannelMonitor(s) are often not re-serialized when on-chain events
// happen, unlike ChannelManager which tends to be re-serialized after any relevant event(s).
let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
nodes[0].chain_monitor.chain_monitor.monitors.read().unwrap().iter().next().unwrap().1.write(&mut chan_0_monitor_serialized).unwrap();

header.prev_blockhash = nodes[0].best_block_hash();
let claim_block = Block { header, txdata: claim_txn};
connect_block(&nodes[0], &claim_block);
expect_payment_sent!(nodes[0], payment_preimage);

// ChannelManagers generally get re-serialized after any relevant event(s). Since we just
// connected a highly-relevant block, it likely gets serialized out now.
let mut chan_manager_serialized = test_utils::TestVecWriter(Vec::new());
nodes[0].node.write(&mut chan_manager_serialized).unwrap();

// Now reload nodes[0]...
persister = test_utils::TestPersister::new();
let keys_manager = &chanmon_cfgs[0].keys_manager;
new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager);
nodes[0].chain_monitor = &new_chain_monitor;
let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
&mut chan_0_monitor_read, keys_manager).unwrap();
assert!(chan_0_monitor_read.is_empty());

let (_, nodes_0_deserialized_tmp) = {
let mut channel_monitors = HashMap::new();
channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
<(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>
::read(&mut io::Cursor::new(&chan_manager_serialized.0[..]), ChannelManagerReadArgs {
default_config: Default::default(),
keys_manager,
fee_estimator: node_cfgs[0].fee_estimator,
chain_monitor: nodes[0].chain_monitor,
tx_broadcaster: nodes[0].tx_broadcaster.clone(),
logger: nodes[0].logger,
channel_monitors,
}).unwrap()
};
nodes_0_deserialized = nodes_0_deserialized_tmp;

assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok());
check_added_monitors!(nodes[0], 1);
nodes[0].node = &nodes_0_deserialized;

// Note that if we re-connect the block which exposed nodes[0] to the payment preimage (but
// which the current ChannelMonitor has not seen), the ChannelManager's de-duplication of
// payment events should kick in, leaving us with no pending events here.
let height = nodes[0].blocks.lock().unwrap().len() as u32 - 1;
nodes[0].chain_monitor.chain_monitor.block_connected(&claim_block, height);
assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
}

#[test]
fn test_manager_serialize_deserialize_events() {
// This test makes sure the events field in ChannelManager survives de/serialization
Expand Down

0 comments on commit a0fe042

Please sign in to comment.