Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Migrate fee payment from Currency to fungible #2292

Merged
merged 50 commits into from
Apr 4, 2024

Conversation

liamaharon
Copy link
Contributor

@liamaharon liamaharon commented Nov 13, 2023

Part of #226
Related #1833

  • Deprecate CurrencyAdapter and introduce FungibleAdapter
  • Deprecate ToStakingPot and replace usage with ResolveTo
    • Required creating a new StakingPotAccountId struct that implements TypedGet for the staking pot account ID
  • Update parachain common utils DealWithFees, ToAuthor and AssetsToBlockAuthor implementations to use fungible
  • Update runtime XCM Weight Traders to use ResolveTo instead of ToStakingPot
  • Update runtime Transaction Payment pallets to use FungibleAdapter instead of CurrencyAdapter
  • Blocked by Unbalanced and Balanced fungible conformance tests, and fungible fixes #1296, needs the Unbalanced::decrease_balance fix

@liamaharon liamaharon added the T1-FRAME This PR/Issue is related to core FRAME, the framework. label Nov 13, 2023
@liamaharon liamaharon requested review from a team November 13, 2023 12:17
@liamaharon liamaharon changed the title Create FungibleAdapter Create FungibleAdapter for transaction payment Nov 13, 2023
@liamaharon liamaharon marked this pull request as draft November 13, 2023 12:17
@liamaharon liamaharon changed the title Create FungibleAdapter for transaction payment Migrate fee payment to fungibles Nov 16, 2023
@liamaharon liamaharon changed the title Migrate fee payment to fungibles Migrate fee payment from Currency to fungible Nov 16, 2023
@liamaharon liamaharon marked this pull request as ready for review November 16, 2023 16:00
@liamaharon liamaharon requested a review from a team as a code owner November 16, 2023 16:00
@paritytech-review-bot paritytech-review-bot bot requested review from a team November 16, 2023 16:00
@paritytech-review-bot paritytech-review-bot bot requested a review from a team November 20, 2023 11:50
@liamaharon liamaharon added this pull request to the merge queue Apr 4, 2024
@github-merge-queue github-merge-queue bot removed this pull request from the merge queue due to failed status checks Apr 4, 2024
@liamaharon liamaharon added this pull request to the merge queue Apr 4, 2024
Merged via the queue into master with commit bda4e75 Apr 4, 2024
130 of 133 checks passed
@liamaharon liamaharon deleted the liam-currency-adapter-fungible branch April 4, 2024 14:50
Ank4n pushed a commit that referenced this pull request Apr 9, 2024
Part of #226 
Related #1833

- Deprecate `CurrencyAdapter` and introduce `FungibleAdapter`
- Deprecate `ToStakingPot` and replace usage with `ResolveTo`
- Required creating a new `StakingPotAccountId` struct that implements
`TypedGet` for the staking pot account ID
- Update parachain common utils `DealWithFees`, `ToAuthor` and
`AssetsToBlockAuthor` implementations to use `fungible`
- Update runtime XCM Weight Traders to use `ResolveTo` instead of
`ToStakingPot`
- Update runtime Transaction Payment pallets to use `FungibleAdapter`
instead of `CurrencyAdapter`
- [x] Blocked by #1296,
needs the `Unbalanced::decrease_balance` fix
dharjeezy pushed a commit to dharjeezy/polkadot-sdk that referenced this pull request Apr 9, 2024
Part of paritytech#226 
Related paritytech#1833

- Deprecate `CurrencyAdapter` and introduce `FungibleAdapter`
- Deprecate `ToStakingPot` and replace usage with `ResolveTo`
- Required creating a new `StakingPotAccountId` struct that implements
`TypedGet` for the staking pot account ID
- Update parachain common utils `DealWithFees`, `ToAuthor` and
`AssetsToBlockAuthor` implementations to use `fungible`
- Update runtime XCM Weight Traders to use `ResolveTo` instead of
`ToStakingPot`
- Update runtime Transaction Payment pallets to use `FungibleAdapter`
instead of `CurrencyAdapter`
- [x] Blocked by paritytech#1296,
needs the `Unbalanced::decrease_balance` fix
serban300 added a commit to serban300/polkadot-sdk that referenced this pull request Apr 9, 2024
* Migrate fee payment from `Currency` to `fungible` (paritytech#2292)

Part of paritytech#226
Related paritytech#1833

- Deprecate `CurrencyAdapter` and introduce `FungibleAdapter`
- Deprecate `ToStakingPot` and replace usage with `ResolveTo`
- Required creating a new `StakingPotAccountId` struct that implements
`TypedGet` for the staking pot account ID
- Update parachain common utils `DealWithFees`, `ToAuthor` and
`AssetsToBlockAuthor` implementations to use `fungible`
- Update runtime XCM Weight Traders to use `ResolveTo` instead of
`ToStakingPot`
- Update runtime Transaction Payment pallets to use `FungibleAdapter`
instead of `CurrencyAdapter`
- [x] Blocked by paritytech#1296,
needs the `Unbalanced::decrease_balance` fix

(cherry picked from commit bda4e75)

* Upgrade `trie-db` from `0.28.0` to `0.29.0` (paritytech#3982)

- What does this PR do?
1. Upgrades `trie-db`'s version to the latest release. This release
includes, among others, an implementation of `DoubleEndedIterator` for
the `TrieDB` struct, allowing to iterate both backwards and forwards
within the leaves of a trie.
2. Upgrades `trie-bench` to `0.39.0` for compatibility.
3. Upgrades `criterion` to `0.5.1` for compatibility.
- Why are these changes needed?
Besides keeping up with the upgrade of `trie-db`, this specifically adds
the functionality of iterating back on the leafs of a trie, with
`sp-trie`. In a project we're currently working on, this comes very
handy to verify a Merkle proof that is the response to a challenge. The
challenge is a random hash that (most likely) will not be an existing
leaf in the trie. So the challenged user, has to provide a Merkle proof
of the previous and next existing leafs in the trie, that surround the
random challenged hash.

Without having DoubleEnded iterators, we're forced to iterate until we
find the first existing leaf, like so:
```rust
        // ************* VERIFIER (RUNTIME) *************
        // Verify proof. This generates a partial trie based on the proof and
        // checks that the root hash matches the `expected_root`.
        let (memdb, root) = proof.to_memory_db(Some(&root)).unwrap();
        let trie = TrieDBBuilder::<LayoutV1<RefHasher>>::new(&memdb, &root).build();

        // Print all leaf node keys and values.
        println!("\nPrinting leaf nodes of partial tree...");
        for key in trie.key_iter().unwrap() {
            if key.is_ok() {
                println!("Leaf node key: {:?}", key.clone().unwrap());

                let val = trie.get(&key.unwrap());

                if val.is_ok() {
                    println!("Leaf node value: {:?}", val.unwrap());
                } else {
                    println!("Leaf node value: None");
                }
            }
        }

        println!("RECONSTRUCTED TRIE {:#?}", trie);

        // Create an iterator over the leaf nodes.
        let mut iter = trie.iter().unwrap();

        // First element with a value should be the previous existing leaf to the challenged hash.
        let mut prev_key = None;
        for element in &mut iter {
            if element.is_ok() {
                let (key, _) = element.unwrap();
                prev_key = Some(key);
                break;
            }
        }
        assert!(prev_key.is_some());

        // Since hashes are `Vec<u8>` ordered in big-endian, we can compare them directly.
        assert!(prev_key.unwrap() <= challenge_hash.to_vec());

        // The next element should exist (meaning there is no other existing leaf between the
        // previous and next leaf) and it should be greater than the challenged hash.
        let next_key = iter.next().unwrap().unwrap().0;
        assert!(next_key >= challenge_hash.to_vec());
```

With DoubleEnded iterators, we can avoid that, like this:
```rust
        // ************* VERIFIER (RUNTIME) *************
        // Verify proof. This generates a partial trie based on the proof and
        // checks that the root hash matches the `expected_root`.
        let (memdb, root) = proof.to_memory_db(Some(&root)).unwrap();
        let trie = TrieDBBuilder::<LayoutV1<RefHasher>>::new(&memdb, &root).build();

        // Print all leaf node keys and values.
        println!("\nPrinting leaf nodes of partial tree...");
        for key in trie.key_iter().unwrap() {
            if key.is_ok() {
                println!("Leaf node key: {:?}", key.clone().unwrap());

                let val = trie.get(&key.unwrap());

                if val.is_ok() {
                    println!("Leaf node value: {:?}", val.unwrap());
                } else {
                    println!("Leaf node value: None");
                }
            }
        }

        // println!("RECONSTRUCTED TRIE {:#?}", trie);
        println!("\nChallenged key: {:?}", challenge_hash);

        // Create an iterator over the leaf nodes.
        let mut double_ended_iter = trie.into_double_ended_iter().unwrap();

        // First element with a value should be the previous existing leaf to the challenged hash.
        double_ended_iter.seek(&challenge_hash.to_vec()).unwrap();
        let next_key = double_ended_iter.next_back().unwrap().unwrap().0;
        let prev_key = double_ended_iter.next_back().unwrap().unwrap().0;

        // Since hashes are `Vec<u8>` ordered in big-endian, we can compare them directly.
        println!("Prev key: {:?}", prev_key);
        assert!(prev_key <= challenge_hash.to_vec());

        println!("Next key: {:?}", next_key);
        assert!(next_key >= challenge_hash.to_vec());
```
- How were these changes implemented and what do they affect?
All that is needed for this functionality to be exposed is changing the
version number of `trie-db` in all the `Cargo.toml`s applicable, and
re-exporting some additional structs from `trie-db` in `sp-trie`.

---------

Co-authored-by: Bastian Köcher <git@kchr.de>
(cherry picked from commit 4e73c0f)

* Update polkadot-sdk refs

* Fix Cargo.lock

---------

Co-authored-by: Liam Aharon <liam.aharon@hotmail.com>
Co-authored-by: Facundo Farall <37149322+ffarall@users.noreply.github.com>
serban300 added a commit to serban300/polkadot-sdk that referenced this pull request Apr 9, 2024
* Migrate fee payment from `Currency` to `fungible` (paritytech#2292)

Part of paritytech#226
Related paritytech#1833

- Deprecate `CurrencyAdapter` and introduce `FungibleAdapter`
- Deprecate `ToStakingPot` and replace usage with `ResolveTo`
- Required creating a new `StakingPotAccountId` struct that implements
`TypedGet` for the staking pot account ID
- Update parachain common utils `DealWithFees`, `ToAuthor` and
`AssetsToBlockAuthor` implementations to use `fungible`
- Update runtime XCM Weight Traders to use `ResolveTo` instead of
`ToStakingPot`
- Update runtime Transaction Payment pallets to use `FungibleAdapter`
instead of `CurrencyAdapter`
- [x] Blocked by paritytech#1296,
needs the `Unbalanced::decrease_balance` fix

(cherry picked from commit bda4e75)

* Upgrade `trie-db` from `0.28.0` to `0.29.0` (paritytech#3982)

- What does this PR do?
1. Upgrades `trie-db`'s version to the latest release. This release
includes, among others, an implementation of `DoubleEndedIterator` for
the `TrieDB` struct, allowing to iterate both backwards and forwards
within the leaves of a trie.
2. Upgrades `trie-bench` to `0.39.0` for compatibility.
3. Upgrades `criterion` to `0.5.1` for compatibility.
- Why are these changes needed?
Besides keeping up with the upgrade of `trie-db`, this specifically adds
the functionality of iterating back on the leafs of a trie, with
`sp-trie`. In a project we're currently working on, this comes very
handy to verify a Merkle proof that is the response to a challenge. The
challenge is a random hash that (most likely) will not be an existing
leaf in the trie. So the challenged user, has to provide a Merkle proof
of the previous and next existing leafs in the trie, that surround the
random challenged hash.

Without having DoubleEnded iterators, we're forced to iterate until we
find the first existing leaf, like so:
```rust
        // ************* VERIFIER (RUNTIME) *************
        // Verify proof. This generates a partial trie based on the proof and
        // checks that the root hash matches the `expected_root`.
        let (memdb, root) = proof.to_memory_db(Some(&root)).unwrap();
        let trie = TrieDBBuilder::<LayoutV1<RefHasher>>::new(&memdb, &root).build();

        // Print all leaf node keys and values.
        println!("\nPrinting leaf nodes of partial tree...");
        for key in trie.key_iter().unwrap() {
            if key.is_ok() {
                println!("Leaf node key: {:?}", key.clone().unwrap());

                let val = trie.get(&key.unwrap());

                if val.is_ok() {
                    println!("Leaf node value: {:?}", val.unwrap());
                } else {
                    println!("Leaf node value: None");
                }
            }
        }

        println!("RECONSTRUCTED TRIE {:#?}", trie);

        // Create an iterator over the leaf nodes.
        let mut iter = trie.iter().unwrap();

        // First element with a value should be the previous existing leaf to the challenged hash.
        let mut prev_key = None;
        for element in &mut iter {
            if element.is_ok() {
                let (key, _) = element.unwrap();
                prev_key = Some(key);
                break;
            }
        }
        assert!(prev_key.is_some());

        // Since hashes are `Vec<u8>` ordered in big-endian, we can compare them directly.
        assert!(prev_key.unwrap() <= challenge_hash.to_vec());

        // The next element should exist (meaning there is no other existing leaf between the
        // previous and next leaf) and it should be greater than the challenged hash.
        let next_key = iter.next().unwrap().unwrap().0;
        assert!(next_key >= challenge_hash.to_vec());
```

With DoubleEnded iterators, we can avoid that, like this:
```rust
        // ************* VERIFIER (RUNTIME) *************
        // Verify proof. This generates a partial trie based on the proof and
        // checks that the root hash matches the `expected_root`.
        let (memdb, root) = proof.to_memory_db(Some(&root)).unwrap();
        let trie = TrieDBBuilder::<LayoutV1<RefHasher>>::new(&memdb, &root).build();

        // Print all leaf node keys and values.
        println!("\nPrinting leaf nodes of partial tree...");
        for key in trie.key_iter().unwrap() {
            if key.is_ok() {
                println!("Leaf node key: {:?}", key.clone().unwrap());

                let val = trie.get(&key.unwrap());

                if val.is_ok() {
                    println!("Leaf node value: {:?}", val.unwrap());
                } else {
                    println!("Leaf node value: None");
                }
            }
        }

        // println!("RECONSTRUCTED TRIE {:#?}", trie);
        println!("\nChallenged key: {:?}", challenge_hash);

        // Create an iterator over the leaf nodes.
        let mut double_ended_iter = trie.into_double_ended_iter().unwrap();

        // First element with a value should be the previous existing leaf to the challenged hash.
        double_ended_iter.seek(&challenge_hash.to_vec()).unwrap();
        let next_key = double_ended_iter.next_back().unwrap().unwrap().0;
        let prev_key = double_ended_iter.next_back().unwrap().unwrap().0;

        // Since hashes are `Vec<u8>` ordered in big-endian, we can compare them directly.
        println!("Prev key: {:?}", prev_key);
        assert!(prev_key <= challenge_hash.to_vec());

        println!("Next key: {:?}", next_key);
        assert!(next_key >= challenge_hash.to_vec());
```
- How were these changes implemented and what do they affect?
All that is needed for this functionality to be exposed is changing the
version number of `trie-db` in all the `Cargo.toml`s applicable, and
re-exporting some additional structs from `trie-db` in `sp-trie`.

---------

Co-authored-by: Bastian Köcher <git@kchr.de>
(cherry picked from commit 4e73c0f)

* Update polkadot-sdk refs

* Fix Cargo.lock

---------

Co-authored-by: Liam Aharon <liam.aharon@hotmail.com>
Co-authored-by: Facundo Farall <37149322+ffarall@users.noreply.github.com>
serban300 added a commit to serban300/polkadot-sdk that referenced this pull request Apr 9, 2024
* Migrate fee payment from `Currency` to `fungible` (paritytech#2292)

Part of paritytech#226
Related paritytech#1833

- Deprecate `CurrencyAdapter` and introduce `FungibleAdapter`
- Deprecate `ToStakingPot` and replace usage with `ResolveTo`
- Required creating a new `StakingPotAccountId` struct that implements
`TypedGet` for the staking pot account ID
- Update parachain common utils `DealWithFees`, `ToAuthor` and
`AssetsToBlockAuthor` implementations to use `fungible`
- Update runtime XCM Weight Traders to use `ResolveTo` instead of
`ToStakingPot`
- Update runtime Transaction Payment pallets to use `FungibleAdapter`
instead of `CurrencyAdapter`
- [x] Blocked by paritytech#1296,
needs the `Unbalanced::decrease_balance` fix

(cherry picked from commit bda4e75)

* Upgrade `trie-db` from `0.28.0` to `0.29.0` (paritytech#3982)

- What does this PR do?
1. Upgrades `trie-db`'s version to the latest release. This release
includes, among others, an implementation of `DoubleEndedIterator` for
the `TrieDB` struct, allowing to iterate both backwards and forwards
within the leaves of a trie.
2. Upgrades `trie-bench` to `0.39.0` for compatibility.
3. Upgrades `criterion` to `0.5.1` for compatibility.
- Why are these changes needed?
Besides keeping up with the upgrade of `trie-db`, this specifically adds
the functionality of iterating back on the leafs of a trie, with
`sp-trie`. In a project we're currently working on, this comes very
handy to verify a Merkle proof that is the response to a challenge. The
challenge is a random hash that (most likely) will not be an existing
leaf in the trie. So the challenged user, has to provide a Merkle proof
of the previous and next existing leafs in the trie, that surround the
random challenged hash.

Without having DoubleEnded iterators, we're forced to iterate until we
find the first existing leaf, like so:
```rust
        // ************* VERIFIER (RUNTIME) *************
        // Verify proof. This generates a partial trie based on the proof and
        // checks that the root hash matches the `expected_root`.
        let (memdb, root) = proof.to_memory_db(Some(&root)).unwrap();
        let trie = TrieDBBuilder::<LayoutV1<RefHasher>>::new(&memdb, &root).build();

        // Print all leaf node keys and values.
        println!("\nPrinting leaf nodes of partial tree...");
        for key in trie.key_iter().unwrap() {
            if key.is_ok() {
                println!("Leaf node key: {:?}", key.clone().unwrap());

                let val = trie.get(&key.unwrap());

                if val.is_ok() {
                    println!("Leaf node value: {:?}", val.unwrap());
                } else {
                    println!("Leaf node value: None");
                }
            }
        }

        println!("RECONSTRUCTED TRIE {:#?}", trie);

        // Create an iterator over the leaf nodes.
        let mut iter = trie.iter().unwrap();

        // First element with a value should be the previous existing leaf to the challenged hash.
        let mut prev_key = None;
        for element in &mut iter {
            if element.is_ok() {
                let (key, _) = element.unwrap();
                prev_key = Some(key);
                break;
            }
        }
        assert!(prev_key.is_some());

        // Since hashes are `Vec<u8>` ordered in big-endian, we can compare them directly.
        assert!(prev_key.unwrap() <= challenge_hash.to_vec());

        // The next element should exist (meaning there is no other existing leaf between the
        // previous and next leaf) and it should be greater than the challenged hash.
        let next_key = iter.next().unwrap().unwrap().0;
        assert!(next_key >= challenge_hash.to_vec());
```

With DoubleEnded iterators, we can avoid that, like this:
```rust
        // ************* VERIFIER (RUNTIME) *************
        // Verify proof. This generates a partial trie based on the proof and
        // checks that the root hash matches the `expected_root`.
        let (memdb, root) = proof.to_memory_db(Some(&root)).unwrap();
        let trie = TrieDBBuilder::<LayoutV1<RefHasher>>::new(&memdb, &root).build();

        // Print all leaf node keys and values.
        println!("\nPrinting leaf nodes of partial tree...");
        for key in trie.key_iter().unwrap() {
            if key.is_ok() {
                println!("Leaf node key: {:?}", key.clone().unwrap());

                let val = trie.get(&key.unwrap());

                if val.is_ok() {
                    println!("Leaf node value: {:?}", val.unwrap());
                } else {
                    println!("Leaf node value: None");
                }
            }
        }

        // println!("RECONSTRUCTED TRIE {:#?}", trie);
        println!("\nChallenged key: {:?}", challenge_hash);

        // Create an iterator over the leaf nodes.
        let mut double_ended_iter = trie.into_double_ended_iter().unwrap();

        // First element with a value should be the previous existing leaf to the challenged hash.
        double_ended_iter.seek(&challenge_hash.to_vec()).unwrap();
        let next_key = double_ended_iter.next_back().unwrap().unwrap().0;
        let prev_key = double_ended_iter.next_back().unwrap().unwrap().0;

        // Since hashes are `Vec<u8>` ordered in big-endian, we can compare them directly.
        println!("Prev key: {:?}", prev_key);
        assert!(prev_key <= challenge_hash.to_vec());

        println!("Next key: {:?}", next_key);
        assert!(next_key >= challenge_hash.to_vec());
```
- How were these changes implemented and what do they affect?
All that is needed for this functionality to be exposed is changing the
version number of `trie-db` in all the `Cargo.toml`s applicable, and
re-exporting some additional structs from `trie-db` in `sp-trie`.

---------

Co-authored-by: Bastian Köcher <git@kchr.de>
(cherry picked from commit 4e73c0f)

* Update polkadot-sdk refs

* Fix Cargo.lock

---------

Co-authored-by: Liam Aharon <liam.aharon@hotmail.com>
Co-authored-by: Facundo Farall <37149322+ffarall@users.noreply.github.com>
serban300 added a commit to serban300/polkadot-sdk that referenced this pull request Apr 10, 2024
* Migrate fee payment from `Currency` to `fungible` (paritytech#2292)

Part of paritytech#226
Related paritytech#1833

- Deprecate `CurrencyAdapter` and introduce `FungibleAdapter`
- Deprecate `ToStakingPot` and replace usage with `ResolveTo`
- Required creating a new `StakingPotAccountId` struct that implements
`TypedGet` for the staking pot account ID
- Update parachain common utils `DealWithFees`, `ToAuthor` and
`AssetsToBlockAuthor` implementations to use `fungible`
- Update runtime XCM Weight Traders to use `ResolveTo` instead of
`ToStakingPot`
- Update runtime Transaction Payment pallets to use `FungibleAdapter`
instead of `CurrencyAdapter`
- [x] Blocked by paritytech#1296,
needs the `Unbalanced::decrease_balance` fix

(cherry picked from commit bda4e75)

* Upgrade `trie-db` from `0.28.0` to `0.29.0` (paritytech#3982)

- What does this PR do?
1. Upgrades `trie-db`'s version to the latest release. This release
includes, among others, an implementation of `DoubleEndedIterator` for
the `TrieDB` struct, allowing to iterate both backwards and forwards
within the leaves of a trie.
2. Upgrades `trie-bench` to `0.39.0` for compatibility.
3. Upgrades `criterion` to `0.5.1` for compatibility.
- Why are these changes needed?
Besides keeping up with the upgrade of `trie-db`, this specifically adds
the functionality of iterating back on the leafs of a trie, with
`sp-trie`. In a project we're currently working on, this comes very
handy to verify a Merkle proof that is the response to a challenge. The
challenge is a random hash that (most likely) will not be an existing
leaf in the trie. So the challenged user, has to provide a Merkle proof
of the previous and next existing leafs in the trie, that surround the
random challenged hash.

Without having DoubleEnded iterators, we're forced to iterate until we
find the first existing leaf, like so:
```rust
        // ************* VERIFIER (RUNTIME) *************
        // Verify proof. This generates a partial trie based on the proof and
        // checks that the root hash matches the `expected_root`.
        let (memdb, root) = proof.to_memory_db(Some(&root)).unwrap();
        let trie = TrieDBBuilder::<LayoutV1<RefHasher>>::new(&memdb, &root).build();

        // Print all leaf node keys and values.
        println!("\nPrinting leaf nodes of partial tree...");
        for key in trie.key_iter().unwrap() {
            if key.is_ok() {
                println!("Leaf node key: {:?}", key.clone().unwrap());

                let val = trie.get(&key.unwrap());

                if val.is_ok() {
                    println!("Leaf node value: {:?}", val.unwrap());
                } else {
                    println!("Leaf node value: None");
                }
            }
        }

        println!("RECONSTRUCTED TRIE {:#?}", trie);

        // Create an iterator over the leaf nodes.
        let mut iter = trie.iter().unwrap();

        // First element with a value should be the previous existing leaf to the challenged hash.
        let mut prev_key = None;
        for element in &mut iter {
            if element.is_ok() {
                let (key, _) = element.unwrap();
                prev_key = Some(key);
                break;
            }
        }
        assert!(prev_key.is_some());

        // Since hashes are `Vec<u8>` ordered in big-endian, we can compare them directly.
        assert!(prev_key.unwrap() <= challenge_hash.to_vec());

        // The next element should exist (meaning there is no other existing leaf between the
        // previous and next leaf) and it should be greater than the challenged hash.
        let next_key = iter.next().unwrap().unwrap().0;
        assert!(next_key >= challenge_hash.to_vec());
```

With DoubleEnded iterators, we can avoid that, like this:
```rust
        // ************* VERIFIER (RUNTIME) *************
        // Verify proof. This generates a partial trie based on the proof and
        // checks that the root hash matches the `expected_root`.
        let (memdb, root) = proof.to_memory_db(Some(&root)).unwrap();
        let trie = TrieDBBuilder::<LayoutV1<RefHasher>>::new(&memdb, &root).build();

        // Print all leaf node keys and values.
        println!("\nPrinting leaf nodes of partial tree...");
        for key in trie.key_iter().unwrap() {
            if key.is_ok() {
                println!("Leaf node key: {:?}", key.clone().unwrap());

                let val = trie.get(&key.unwrap());

                if val.is_ok() {
                    println!("Leaf node value: {:?}", val.unwrap());
                } else {
                    println!("Leaf node value: None");
                }
            }
        }

        // println!("RECONSTRUCTED TRIE {:#?}", trie);
        println!("\nChallenged key: {:?}", challenge_hash);

        // Create an iterator over the leaf nodes.
        let mut double_ended_iter = trie.into_double_ended_iter().unwrap();

        // First element with a value should be the previous existing leaf to the challenged hash.
        double_ended_iter.seek(&challenge_hash.to_vec()).unwrap();
        let next_key = double_ended_iter.next_back().unwrap().unwrap().0;
        let prev_key = double_ended_iter.next_back().unwrap().unwrap().0;

        // Since hashes are `Vec<u8>` ordered in big-endian, we can compare them directly.
        println!("Prev key: {:?}", prev_key);
        assert!(prev_key <= challenge_hash.to_vec());

        println!("Next key: {:?}", next_key);
        assert!(next_key >= challenge_hash.to_vec());
```
- How were these changes implemented and what do they affect?
All that is needed for this functionality to be exposed is changing the
version number of `trie-db` in all the `Cargo.toml`s applicable, and
re-exporting some additional structs from `trie-db` in `sp-trie`.

---------

Co-authored-by: Bastian Köcher <git@kchr.de>
(cherry picked from commit 4e73c0f)

* Update polkadot-sdk refs

* Fix Cargo.lock

---------

Co-authored-by: Liam Aharon <liam.aharon@hotmail.com>
Co-authored-by: Facundo Farall <37149322+ffarall@users.noreply.github.com>
serban300 added a commit to serban300/polkadot-sdk that referenced this pull request Apr 10, 2024
* Migrate fee payment from `Currency` to `fungible` (paritytech#2292)

Part of paritytech#226
Related paritytech#1833

- Deprecate `CurrencyAdapter` and introduce `FungibleAdapter`
- Deprecate `ToStakingPot` and replace usage with `ResolveTo`
- Required creating a new `StakingPotAccountId` struct that implements
`TypedGet` for the staking pot account ID
- Update parachain common utils `DealWithFees`, `ToAuthor` and
`AssetsToBlockAuthor` implementations to use `fungible`
- Update runtime XCM Weight Traders to use `ResolveTo` instead of
`ToStakingPot`
- Update runtime Transaction Payment pallets to use `FungibleAdapter`
instead of `CurrencyAdapter`
- [x] Blocked by paritytech#1296,
needs the `Unbalanced::decrease_balance` fix

(cherry picked from commit bda4e75)

* Upgrade `trie-db` from `0.28.0` to `0.29.0` (paritytech#3982)

- What does this PR do?
1. Upgrades `trie-db`'s version to the latest release. This release
includes, among others, an implementation of `DoubleEndedIterator` for
the `TrieDB` struct, allowing to iterate both backwards and forwards
within the leaves of a trie.
2. Upgrades `trie-bench` to `0.39.0` for compatibility.
3. Upgrades `criterion` to `0.5.1` for compatibility.
- Why are these changes needed?
Besides keeping up with the upgrade of `trie-db`, this specifically adds
the functionality of iterating back on the leafs of a trie, with
`sp-trie`. In a project we're currently working on, this comes very
handy to verify a Merkle proof that is the response to a challenge. The
challenge is a random hash that (most likely) will not be an existing
leaf in the trie. So the challenged user, has to provide a Merkle proof
of the previous and next existing leafs in the trie, that surround the
random challenged hash.

Without having DoubleEnded iterators, we're forced to iterate until we
find the first existing leaf, like so:
```rust
        // ************* VERIFIER (RUNTIME) *************
        // Verify proof. This generates a partial trie based on the proof and
        // checks that the root hash matches the `expected_root`.
        let (memdb, root) = proof.to_memory_db(Some(&root)).unwrap();
        let trie = TrieDBBuilder::<LayoutV1<RefHasher>>::new(&memdb, &root).build();

        // Print all leaf node keys and values.
        println!("\nPrinting leaf nodes of partial tree...");
        for key in trie.key_iter().unwrap() {
            if key.is_ok() {
                println!("Leaf node key: {:?}", key.clone().unwrap());

                let val = trie.get(&key.unwrap());

                if val.is_ok() {
                    println!("Leaf node value: {:?}", val.unwrap());
                } else {
                    println!("Leaf node value: None");
                }
            }
        }

        println!("RECONSTRUCTED TRIE {:#?}", trie);

        // Create an iterator over the leaf nodes.
        let mut iter = trie.iter().unwrap();

        // First element with a value should be the previous existing leaf to the challenged hash.
        let mut prev_key = None;
        for element in &mut iter {
            if element.is_ok() {
                let (key, _) = element.unwrap();
                prev_key = Some(key);
                break;
            }
        }
        assert!(prev_key.is_some());

        // Since hashes are `Vec<u8>` ordered in big-endian, we can compare them directly.
        assert!(prev_key.unwrap() <= challenge_hash.to_vec());

        // The next element should exist (meaning there is no other existing leaf between the
        // previous and next leaf) and it should be greater than the challenged hash.
        let next_key = iter.next().unwrap().unwrap().0;
        assert!(next_key >= challenge_hash.to_vec());
```

With DoubleEnded iterators, we can avoid that, like this:
```rust
        // ************* VERIFIER (RUNTIME) *************
        // Verify proof. This generates a partial trie based on the proof and
        // checks that the root hash matches the `expected_root`.
        let (memdb, root) = proof.to_memory_db(Some(&root)).unwrap();
        let trie = TrieDBBuilder::<LayoutV1<RefHasher>>::new(&memdb, &root).build();

        // Print all leaf node keys and values.
        println!("\nPrinting leaf nodes of partial tree...");
        for key in trie.key_iter().unwrap() {
            if key.is_ok() {
                println!("Leaf node key: {:?}", key.clone().unwrap());

                let val = trie.get(&key.unwrap());

                if val.is_ok() {
                    println!("Leaf node value: {:?}", val.unwrap());
                } else {
                    println!("Leaf node value: None");
                }
            }
        }

        // println!("RECONSTRUCTED TRIE {:#?}", trie);
        println!("\nChallenged key: {:?}", challenge_hash);

        // Create an iterator over the leaf nodes.
        let mut double_ended_iter = trie.into_double_ended_iter().unwrap();

        // First element with a value should be the previous existing leaf to the challenged hash.
        double_ended_iter.seek(&challenge_hash.to_vec()).unwrap();
        let next_key = double_ended_iter.next_back().unwrap().unwrap().0;
        let prev_key = double_ended_iter.next_back().unwrap().unwrap().0;

        // Since hashes are `Vec<u8>` ordered in big-endian, we can compare them directly.
        println!("Prev key: {:?}", prev_key);
        assert!(prev_key <= challenge_hash.to_vec());

        println!("Next key: {:?}", next_key);
        assert!(next_key >= challenge_hash.to_vec());
```
- How were these changes implemented and what do they affect?
All that is needed for this functionality to be exposed is changing the
version number of `trie-db` in all the `Cargo.toml`s applicable, and
re-exporting some additional structs from `trie-db` in `sp-trie`.

---------

Co-authored-by: Bastian Köcher <git@kchr.de>
(cherry picked from commit 4e73c0f)

* Update polkadot-sdk refs

* Fix Cargo.lock

---------

Co-authored-by: Liam Aharon <liam.aharon@hotmail.com>
Co-authored-by: Facundo Farall <37149322+ffarall@users.noreply.github.com>
bkchr pushed a commit that referenced this pull request Apr 10, 2024
* Migrate fee payment from `Currency` to `fungible` (#2292)

Part of #226
Related #1833

- Deprecate `CurrencyAdapter` and introduce `FungibleAdapter`
- Deprecate `ToStakingPot` and replace usage with `ResolveTo`
- Required creating a new `StakingPotAccountId` struct that implements
`TypedGet` for the staking pot account ID
- Update parachain common utils `DealWithFees`, `ToAuthor` and
`AssetsToBlockAuthor` implementations to use `fungible`
- Update runtime XCM Weight Traders to use `ResolveTo` instead of
`ToStakingPot`
- Update runtime Transaction Payment pallets to use `FungibleAdapter`
instead of `CurrencyAdapter`
- [x] Blocked by #1296,
needs the `Unbalanced::decrease_balance` fix

(cherry picked from commit bda4e75)

* Upgrade `trie-db` from `0.28.0` to `0.29.0` (#3982)

- What does this PR do?
1. Upgrades `trie-db`'s version to the latest release. This release
includes, among others, an implementation of `DoubleEndedIterator` for
the `TrieDB` struct, allowing to iterate both backwards and forwards
within the leaves of a trie.
2. Upgrades `trie-bench` to `0.39.0` for compatibility.
3. Upgrades `criterion` to `0.5.1` for compatibility.
- Why are these changes needed?
Besides keeping up with the upgrade of `trie-db`, this specifically adds
the functionality of iterating back on the leafs of a trie, with
`sp-trie`. In a project we're currently working on, this comes very
handy to verify a Merkle proof that is the response to a challenge. The
challenge is a random hash that (most likely) will not be an existing
leaf in the trie. So the challenged user, has to provide a Merkle proof
of the previous and next existing leafs in the trie, that surround the
random challenged hash.

Without having DoubleEnded iterators, we're forced to iterate until we
find the first existing leaf, like so:
```rust
        // ************* VERIFIER (RUNTIME) *************
        // Verify proof. This generates a partial trie based on the proof and
        // checks that the root hash matches the `expected_root`.
        let (memdb, root) = proof.to_memory_db(Some(&root)).unwrap();
        let trie = TrieDBBuilder::<LayoutV1<RefHasher>>::new(&memdb, &root).build();

        // Print all leaf node keys and values.
        println!("\nPrinting leaf nodes of partial tree...");
        for key in trie.key_iter().unwrap() {
            if key.is_ok() {
                println!("Leaf node key: {:?}", key.clone().unwrap());

                let val = trie.get(&key.unwrap());

                if val.is_ok() {
                    println!("Leaf node value: {:?}", val.unwrap());
                } else {
                    println!("Leaf node value: None");
                }
            }
        }

        println!("RECONSTRUCTED TRIE {:#?}", trie);

        // Create an iterator over the leaf nodes.
        let mut iter = trie.iter().unwrap();

        // First element with a value should be the previous existing leaf to the challenged hash.
        let mut prev_key = None;
        for element in &mut iter {
            if element.is_ok() {
                let (key, _) = element.unwrap();
                prev_key = Some(key);
                break;
            }
        }
        assert!(prev_key.is_some());

        // Since hashes are `Vec<u8>` ordered in big-endian, we can compare them directly.
        assert!(prev_key.unwrap() <= challenge_hash.to_vec());

        // The next element should exist (meaning there is no other existing leaf between the
        // previous and next leaf) and it should be greater than the challenged hash.
        let next_key = iter.next().unwrap().unwrap().0;
        assert!(next_key >= challenge_hash.to_vec());
```

With DoubleEnded iterators, we can avoid that, like this:
```rust
        // ************* VERIFIER (RUNTIME) *************
        // Verify proof. This generates a partial trie based on the proof and
        // checks that the root hash matches the `expected_root`.
        let (memdb, root) = proof.to_memory_db(Some(&root)).unwrap();
        let trie = TrieDBBuilder::<LayoutV1<RefHasher>>::new(&memdb, &root).build();

        // Print all leaf node keys and values.
        println!("\nPrinting leaf nodes of partial tree...");
        for key in trie.key_iter().unwrap() {
            if key.is_ok() {
                println!("Leaf node key: {:?}", key.clone().unwrap());

                let val = trie.get(&key.unwrap());

                if val.is_ok() {
                    println!("Leaf node value: {:?}", val.unwrap());
                } else {
                    println!("Leaf node value: None");
                }
            }
        }

        // println!("RECONSTRUCTED TRIE {:#?}", trie);
        println!("\nChallenged key: {:?}", challenge_hash);

        // Create an iterator over the leaf nodes.
        let mut double_ended_iter = trie.into_double_ended_iter().unwrap();

        // First element with a value should be the previous existing leaf to the challenged hash.
        double_ended_iter.seek(&challenge_hash.to_vec()).unwrap();
        let next_key = double_ended_iter.next_back().unwrap().unwrap().0;
        let prev_key = double_ended_iter.next_back().unwrap().unwrap().0;

        // Since hashes are `Vec<u8>` ordered in big-endian, we can compare them directly.
        println!("Prev key: {:?}", prev_key);
        assert!(prev_key <= challenge_hash.to_vec());

        println!("Next key: {:?}", next_key);
        assert!(next_key >= challenge_hash.to_vec());
```
- How were these changes implemented and what do they affect?
All that is needed for this functionality to be exposed is changing the
version number of `trie-db` in all the `Cargo.toml`s applicable, and
re-exporting some additional structs from `trie-db` in `sp-trie`.

---------

Co-authored-by: Bastian Köcher <git@kchr.de>
(cherry picked from commit 4e73c0f)

* Update polkadot-sdk refs

* Fix Cargo.lock

---------

Co-authored-by: Liam Aharon <liam.aharon@hotmail.com>
Co-authored-by: Facundo Farall <37149322+ffarall@users.noreply.github.com>
EgorPopelyaev pushed a commit that referenced this pull request May 27, 2024
Part of #226
Related #1833

- Deprecate `CurrencyAdapter` and introduce `FungibleAdapter`
- Deprecate `ToStakingPot` and replace usage with `ResolveTo`
- Required creating a new `StakingPotAccountId` struct that implements
`TypedGet` for the staking pot account ID
- Update parachain common utils `DealWithFees`, `ToAuthor` and
`AssetsToBlockAuthor` implementations to use `fungible`
- Update runtime XCM Weight Traders to use `ResolveTo` instead of
`ToStakingPot`
- Update runtime Transaction Payment pallets to use `FungibleAdapter`
instead of `CurrencyAdapter`
- [x] Blocked by #1296,
needs the `Unbalanced::decrease_balance` fix
EgorPopelyaev pushed a commit that referenced this pull request May 27, 2024
Part of #226
Related #1833

- Deprecate `CurrencyAdapter` and introduce `FungibleAdapter`
- Deprecate `ToStakingPot` and replace usage with `ResolveTo`
- Required creating a new `StakingPotAccountId` struct that implements
`TypedGet` for the staking pot account ID
- Update parachain common utils `DealWithFees`, `ToAuthor` and
`AssetsToBlockAuthor` implementations to use `fungible`
- Update runtime XCM Weight Traders to use `ResolveTo` instead of
`ToStakingPot`
- Update runtime Transaction Payment pallets to use `FungibleAdapter`
instead of `CurrencyAdapter`
- [x] Blocked by #1296,
needs the `Unbalanced::decrease_balance` fix
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
T1-FRAME This PR/Issue is related to core FRAME, the framework.
Projects
Status: Audited
Development

Successfully merging this pull request may close these issues.

6 participants