Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding FEniCSx solver to partitioned-heat-equation tutorial #317

Merged
merged 7 commits into from
Jan 23, 2023
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions partitioned-heat-conduction/fenicsx/clean.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
#!/bin/sh
set -e -u

. ../../tools/cleaning-tools.sh

clean_fenics .
17 changes: 17 additions & 0 deletions partitioned-heat-conduction/fenicsx/errorcomputation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
from ufl import dx
from dolfinx.fem import assemble_scalar, form
import numpy as np
from mpi4py import MPI


def compute_errors(u_approx, u_ref, total_error_tol=10 ** -4):
mesh = u_ref.function_space.mesh

# compute total L2 error between reference and calculated solution
error_pointwise = form(((u_approx - u_ref) / u_ref) ** 2 * dx)
error_total = np.sqrt(mesh.comm.allreduce(assemble_scalar(error_pointwise), MPI.SUM))

assert (error_total < total_error_tol)

# return error_total, error_pointwise
return error_total
PhilipHildebrand marked this conversation as resolved.
Show resolved Hide resolved
287 changes: 287 additions & 0 deletions partitioned-heat-conduction/fenicsx/heat.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,287 @@
"""
The basic example is taken from "Langtangen, Hans Petter, and Anders Logg. Solving PDEs in Python: The FEniCS
Tutorial I. Springer International Publishing, 2016."

The example code has been extended with preCICE API calls and mixed boundary conditions to allow for a Dirichlet-Neumann
coupling of two separate heat equations.

The original source code can be found on https://github.com/hplgit/fenics-tutorial/blob/master/pub/python/vol1/ft03_heat.py.
PhilipHildebrand marked this conversation as resolved.
Show resolved Hide resolved

Heat equation with Dirichlet conditions. (Dirichlet problem)
u'= Laplace(u) + f in the unit square [0,1] x [0,1]
u = u_C on the coupling boundary at x = 1
u = u_D on the remaining boundary
u = u_0 at t = 0
u = 1 + x^2 + alpha*y^2 + \beta*t
f = beta - 2 - 2*alpha

Heat equation with mixed boundary conditions. (Neumann problem)
u'= Laplace(u) + f in the shifted unit square [1,2] x [0,1]
du/dn = f_N on the coupling boundary at x = 1
u = u_D on the remaining boundary
u = u_0 at t = 0
u = 1 + x^2 + alpha*y^2 + \beta*t
f = beta - 2 - 2*alpha
"""

from __future__ import print_function, division
from mpi4py import MPI
from dolfinx.fem import Function, FunctionSpace, Expression, Constant, dirichletbc, locate_dofs_geometrical
from dolfinx.fem.petsc import LinearProblem
from dolfinx.io import XDMFFile
from ufl import TrialFunction, TestFunction, dx, ds, dot, grad, inner, lhs, rhs, FiniteElement, VectorElement
from fenicsxprecice import Adapter
from errorcomputation import compute_errors
from my_enums import ProblemType, DomainPart
import argparse
import numpy as np
from problem_setup import get_geometry


def determine_gradient(V_g, u):
"""
compute flux following http://hplgit.github.io/INF5620/doc/pub/fenics_tutorial1.1/tu2.html#tut-poisson-gradu
:param V_g: Vector function space
:param u: solution where gradient is to be determined
"""

w = TrialFunction(V_g)
v = TestFunction(V_g)

a = inner(w, v) * dx
L = inner(grad(u), v) * dx
problem = LinearProblem(a, L)
return problem.solve()


parser = argparse.ArgumentParser(description="Solving heat equation for simple or complex interface case")
command_group = parser.add_mutually_exclusive_group(required=True)
command_group.add_argument("-d", "--dirichlet", help="create a dirichlet problem", dest="dirichlet",
action="store_true")
command_group.add_argument("-n", "--neumann", help="create a neumann problem", dest="neumann", action="store_true")
parser.add_argument("-e", "--error-tol", help="set error tolerance", type=float, default=10**-6,)

args = parser.parse_args()

fenics_dt = .1 # time step size
# Error is bounded by coupling accuracy. In theory we would obtain the analytical solution.
error_tol = args.error_tol

alpha = 3 # parameter alpha
beta = 1.3 # parameter beta

if args.dirichlet and not args.neumann:
problem = ProblemType.DIRICHLET
domain_part = DomainPart.LEFT
elif args.neumann and not args.dirichlet:
problem = ProblemType.NEUMANN
domain_part = DomainPart.RIGHT

mesh, coupling_boundary, remaining_boundary = get_geometry(MPI.COMM_WORLD, domain_part)

# Define function space using mesh
scalar_element = FiniteElement("P", mesh.ufl_cell(), 2)
vector_element = VectorElement("P", mesh.ufl_cell(), 1)
V = FunctionSpace(mesh, scalar_element)
V_g = FunctionSpace(mesh, vector_element)
W = V_g.sub(0).collapse()[0]
PhilipHildebrand marked this conversation as resolved.
Show resolved Hide resolved

# Define boundary conditions


class Expression_u_D:
def __init__(self):
self.t = 0.0
self.alpha = alpha
self.beta = beta

def eval(self, x):
return np.full(x.shape[1], 1 + x[0] * x[0] + self.alpha * x[1] * x[1] + self.beta * self.t)
PhilipHildebrand marked this conversation as resolved.
Show resolved Hide resolved


u_D = Expression_u_D()
u_D_function = Function(V)
u_D_function.interpolate(u_D.eval)

if problem is ProblemType.DIRICHLET:
# Define flux in x direction
class Expression_f_N:
def __init__(self):
self.alpha = alpha
self.t = 0.0

def eval(self, x):
return np.full(x.shape[1], 2 * x[0])
PhilipHildebrand marked this conversation as resolved.
Show resolved Hide resolved

f_N = Expression_f_N()
f_N_function = Function(V)
f_N_function.interpolate(f_N.eval)

# Define initial value
u_n = Function(V, name="Temperature")
u_n.interpolate(u_D.eval)

precice, precice_dt, initial_data = None, 0.0, None

# Initialize the adapter according to the specific participant
if problem is ProblemType.DIRICHLET:
precice = Adapter(MPI.COMM_WORLD, adapter_config_filename="precice-adapter-config-D.json")
precice_dt = precice.initialize(coupling_boundary, read_function_space=V, write_object=f_N_function)
elif problem is ProblemType.NEUMANN:
precice = Adapter(MPI.COMM_WORLD, adapter_config_filename="precice-adapter-config-N.json")
precice_dt = precice.initialize(coupling_boundary, read_function_space=W, write_object=u_D_function)

dt = Constant(mesh, 0.0)
dt.value = np.min([fenics_dt, precice_dt])

# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)


class Expression_f:
def __init__(self):
self.alpha = alpha
self.beta = beta
self.t = 0.0

def eval(self, x):
return np.full(x.shape[1], self.beta - 2 - 2 * self.alpha)
PhilipHildebrand marked this conversation as resolved.
Show resolved Hide resolved


f = Expression_f()
f_function = Function(V)
# f_function.interpolate(f.eval)
PhilipHildebrand marked this conversation as resolved.
Show resolved Hide resolved
F = u * v / dt * dx + dot(grad(u), grad(v)) * dx - (u_n / dt + f_function) * v * dx

dofs_remaining = locate_dofs_geometrical(V, remaining_boundary)
bcs = [dirichletbc(u_D_function, dofs_remaining)]

# Set boundary conditions at coupling interface once wrt to the coupling
# expression
# TODO hide that in coupling_expression
PhilipHildebrand marked this conversation as resolved.
Show resolved Hide resolved
coupling_expression = precice.create_coupling_expression()
read_data = precice.read_data()
precice.update_coupling_expression(coupling_expression, read_data)
if problem is ProblemType.DIRICHLET:
# modify Dirichlet boundary condition on coupling interface
dofs_coupling = locate_dofs_geometrical(V, coupling_boundary)
bcs.append(dirichletbc(coupling_expression, dofs_coupling))
if problem is ProblemType.NEUMANN:
# modify Neumann boundary condition on coupling interface, modify weak
# form correspondingly
F += v * coupling_expression * ds

a, L = lhs(F), rhs(F)

# Time-stepping
u_np1 = Function(V, name="Temperature")
t = 0

# reference solution at t=0
u_ref = Function(V, name="reference")
u_ref.interpolate(u_D_function)

'''
# TODO
# mark mesh w.r.t ranks
mesh_rank = MeshFunction("size_t", mesh, mesh.topology().dim())
if problem is ProblemType.NEUMANN:
mesh_rank.set_all(MPI.rank(MPI.comm_world) + 4)
else:
mesh_rank.set_all(MPI.rank(MPI.comm_world) + 0)
mesh_rank.rename("myRank", "")
'''
PhilipHildebrand marked this conversation as resolved.
Show resolved Hide resolved

with XDMFFile(MPI.COMM_WORLD, f"./out/{precice.get_participant_name()}.xdmf", "w") as xdmf:
PhilipHildebrand marked this conversation as resolved.
Show resolved Hide resolved
xdmf.write_mesh(mesh)

# output solution and reference solution at t=0, n=0
n = 0
xdmf.write_function(u_n, t)
'''
print('output u^%d and u_ref^%d' % (n, n))
temperature_out << u_n
ref_out << u_ref
ranks << mesh_rank
'''
PhilipHildebrand marked this conversation as resolved.
Show resolved Hide resolved

# error_total, error_pointwise = compute_errors(u_n, u_ref, V) # TODO
''
# TODO
'''
error_out << error_pointwise
'''
PhilipHildebrand marked this conversation as resolved.
Show resolved Hide resolved
u_D.t = t + dt.value
u_D_function.interpolate(u_D.eval)
f.t = t + dt.value
f_function.interpolate(f.eval)

if problem is ProblemType.DIRICHLET:
flux = Function(V_g, name="Heat-Flux")

while precice.is_coupling_ongoing():

# write checkpoint
if precice.is_action_required(precice.action_write_iteration_checkpoint()):
precice.store_checkpoint(u_n, t, n)

read_data = precice.read_data()

# Update the coupling expression with the new read data
precice.update_coupling_expression(coupling_expression, read_data)

dt.value = np.min([fenics_dt, precice_dt])

# Compute solution u^n+1, use bcs u_D^n+1, u^n and coupling bcs
# , petsc_options={"ksp_type": "preonly", "pc_type": "lu"}) # TODO is it possible to do that only once (before th coupling-loop)?
PhilipHildebrand marked this conversation as resolved.
Show resolved Hide resolved
linear_problem = LinearProblem(a, L, bcs=bcs)
u_np1 = linear_problem.solve()

# Write data to preCICE according to which problem is being solved
if problem is ProblemType.DIRICHLET:
# Dirichlet problem reads temperature and writes flux on boundary to Neumann problem
flux = determine_gradient(V_g, u_np1)
flux_x = Function(W)
flux_x.interpolate(flux.sub(0))
precice.write_data(flux_x)
elif problem is ProblemType.NEUMANN:
# Neumann problem reads flux and writes temperature on boundary to Dirichlet problem
precice.write_data(u_np1)

precice_dt = precice.advance(dt.value)

# roll back to checkpoint
if precice.is_action_required(precice.action_read_iteration_checkpoint()):
u_cp, t_cp, n_cp = precice.retrieve_checkpoint()
u_n.interpolate(u_cp)
t = t_cp
n = n_cp
else: # update solution
u_n.interpolate(u_np1)
t += dt.value
n += 1

if precice.is_time_window_complete():
u_ref.interpolate(u_D_function)
# error, error_pointwise = compute_errors(mesh, u_n, u_ref, total_error_tol=error_tol)
error = compute_errors(u_n, u_ref, total_error_tol=error_tol)
PhilipHildebrand marked this conversation as resolved.
Show resolved Hide resolved
print('n = %d, t = %.2f: L2 error on domain = %.3g' % (n, t, error))
print('output u^%d and u_ref^%d' % (n, n))
PhilipHildebrand marked this conversation as resolved.
Show resolved Hide resolved

xdmf.write_function(u_n, t)

# output solution and reference solution at t_n+1
# temperature_out << u_n
# ref_out << u_ref
# error_out << error_pointwise
PhilipHildebrand marked this conversation as resolved.
Show resolved Hide resolved

# Update Dirichlet BC
u_D.t = t + dt.value
u_D_function.interpolate(u_D.eval)
f.t = t + dt.value
f_function.interpolate(f.eval)


# Hold plot
precice.finalize()
19 changes: 19 additions & 0 deletions partitioned-heat-conduction/fenicsx/my_enums.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
from enum import Enum


class ProblemType(Enum):
"""
Enum defines problem type. Details see above.
"""
DIRICHLET = 1 # Dirichlet problem
NEUMANN = 2 # Neumann problem


class DomainPart(Enum):
"""
Enum defines which part of the domain [x_left, x_right] x [y_bottom, y_top] we compute.
"""
LEFT = 1 # left part of domain in simple interface case
RIGHT = 2 # right part of domain in simple interface case
CIRCULAR = 3 # circular part of domain in complex interface case
RECTANGLE = 4 # domain excluding circular part of complex interface case
PhilipHildebrand marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
{
"participant_name": "Dirichlet",
"config_file_name": "../precice-config.xml",
"interface": {
"coupling_mesh_name": "Dirichlet-Mesh",
"write_data_name": "Heat-Flux",
"read_data_name": "Temperature"
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
{
"participant_name": "Neumann",
"config_file_name": "../precice-config.xml",
"interface": {
"coupling_mesh_name": "Neumann-Mesh",
"write_data_name": "Temperature",
"read_data_name": "Heat-Flux"
}
}
Loading